
Risky (Natural) Assets:

When Does Stochasticity Matter for Valuing Natural Capital?

WORKING PAPER: DO NOT CITE WITHOUT PERMISSION

Joshua K. Abbotta, Eli P. Fenichelb, Seong D. Yunc

aSchool of Sustainability, Arizona State University
bYale School of the Environment, Yale University

cDepartment of Agricultural Economics, Mississippi State University

Abstract

The treatment of risk in respect to natural capital has focused on its implications for optimal

management, with little attention being payed to the question of how risk alters the valuation

of natural assets. We extend the theory of natural capital valuation in non-optimized systems

to account for the effects of stochasticity in the dynamics of the natural capital, showing

how risk alters the marginal valuation of natural capital through an “endogenous risk”

effect and through an “endogenous risk aversion” effect that depend in complex ways on

the properties of the welfare function from instantaneous consumption of natural capital,

the properties of the natural capital dynamics, the stochastic process, and the economic

program linking capital stocks and their human use. We also derive a formula showing how

sub-optimal management influences the valuation of natural capital. Using canonical single-

stock examples we demonstrate that in some cases these two risk effects may approximately

balance so that risk has little effect on valuation. However, we demonstrate that risk can

have large and complex effects on valuation when resource dynamics involve non-convexities.

Keywords: Natural capital, Stochasticity, Risk, Sustainability, Wealth Accounting, Green

Accounting
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1. Introduction1

Risk and uncertainty are a longstanding concern in natural resource economics and real-2

world resource management. Most research in this domain focuses on the management3

implications of risk for decision making – how the presence of risk or uncertainty alters the4

optimal control rule. Accordingly, there is a large literature applying stochastic optimal con-5

trol theory to the optimal management of resources subject to stochastic shocks (LaRiviere6

et al., 2017). Tools from robust control are increasingly used to address decision making7

under Knightian model uncertainty. (e.g., Rodriguez et al., 2011; Roseta-Palma and Xepa-8

padeas, 2004). Meanwhile, decision makers are influenced by a wave of thought, loosely9

organized under the heading of the “precautionary principle,” urging less aggressive action,10

or the delay of irreversible actions, under conditions of risk or Knightian uncertainty. This11

mode of thinking is provided some qualified economic support by the literature on option12

value (Arrow and Fisher, 1974; Dixit and Pindyck, 1994; Gollier, 2003), but is countered13

by the literature on adaptive management (e.g., Walters, 1986), which urges active learning14

in the presence of risk and uncertainty. Given these divergent approaches, and their often15

conflicting advice, it is of little surprise that resource governance continues to struggle with16

how to incorporate risk and uncertainty into decision making.17

Lost in the focus on the positive implications of risk and uncertainty for resource manage-18

ment is the question of how risk and uncertainty influence the valuation of natural capital.19

This is a distinct concern from pricing risk (or risk reduction) itself, as in the literature on20

quasi-option value or the value of information (Hanemann, 1989). Rather than pricing incre-21

ments of risk, we are asking, how does the introduction of risk, or change in the magnitude22

of risk, alter the value attached to changes in the stocks of biotic or abiotic resources? In23

what circumstances might risk act to devalue capital stocks, and when might risk enhance a24

stock’s value? How do the presence of non-linear dynamics and the presence of alternative25

stable states (Dasgupta and Mäler, 2004) alter the valuation of risk?26

Addressing these questions is important for the prospective valuation of policy changes27
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that alter resource stocks as well as for retrospective valuation of changes in these stocks,28

as in natural resource damage assessment. Valuation of natural capital is also critical for29

development of wealth-based indicators of sustainability (e.g., Dasgupta, 2001; Dasgupta30

and Mäler, 2000; Hamilton and Clemens, 1999) that have become increasingly common at31

the level of international and national assessments (UNU-IHDP and UNEP, 2014; Dasgupta,32

2021) 1 and that have been used to assess the sustainability of bounded systems such as cities33

(Dovern, Quaas, and Rickels, 2014), hydrological catchments (Pearson et al., 2013) and as an34

indicator of sustainable management for ecosystems (Yun et al., 2017). Nevertheless, despite35

the importance of understanding the effects of risk on the valuation of natural capital, little36

research on this topic exists, at least within the natural resource economics literature.237

To understand the effects of risk on the valuation of natural capital, we must first situate38

risk within the theory of capital valuation (Jorgenson, 1963). Valuing biotic and abiotic39

resources as capital requires that they are valued in terms of the discounted present value40

of the service flows that derive from their consumptive or non-consumptive use – usually in41

combination with human and reproducible capital. Therefore, it is imperative that changes42

in natural capital stocks be mapped to changes in the trajectory of capital stocks and any as-43

sociated service flows (Fenichel, Abbott, and Yun, 2018). In other words, valuation of natural44

capital must implicitly or explicitly be dependent on a forecast of the value of the service flows45

from capital stocks as well as their stocks themselves, where fully coupled human-natural46

systems models (e.g., bioeconomic models) provide one such forecast (Fenichel, Abbott, and47

Yun, 2018). An essential aspect of these forecasts is a description of how human behavior48

that influences service flows or the trajectory of capital stocks will change in response to the49

stocks of capital and other time-varying states of the system. Just as any financial analyst’s50

1For example, Canada contracted for a Comprehensive Wealth report in 2018
https://www.iisd.org/library/comprehensive-wealth-canada-2018-measuring-what-matters-
long-term and the U.K. has developed a 25 year plan focused on natural capital,
https://www.gov.uk/government/groups/natural-capital-committee.

2Kvamsdal et al. (2020) offer an analysis of “ocean wealth” in the Barents sea for a three-species ecosystem
that includes stochasticity. However, the role of risk is ancillary to the multi-species focus of the analysis.
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valuation of a company is contingent on their (often implicit) beliefs of how the company’s51

management will leverage a company’s capital stocks to provide valuable goods and services52

and then invest in these capital stocks moving forward, so any valuation of natural capital53

is contingent upon beliefs about the feedback control rule (i.e. the “economic program”)54

linking capital stocks to the human behavior that “manages” the system. This includes55

expectations about how the manager will respond to risk and uncertainty. Yet, focus within56

bioeconomics has often centered upon the special case of control rules that optimize the57

present value of the system. While understandable from the perspective of advising policy,58

the fixation on optimal control rules fails to provide a realistic forecast of human interactions59

with natural systems in many cases. Given that many natural capital stocks provide service60

flows that are non-excludable, non-rivalrous, and are themselves often subject to incomplete61

property rights, collective action dilemmas, and other governance failures, it is not surprising62

that their management is often demonstrably inefficient, even ‘kakatopic’ (Dasgupta, 2001).63

Therefore, bioeconomic models that utilize optimality assumptions may provide a poor fore-64

cast of the management of natural capital stocks, thereby yielding questionable valuations65

of natural capital - valuations that are critical for credible sustainability assessments.66

Fortunately, substantial theoretical, and some empirical, progress has been made in recent67

years in capital-theoretic valuation of natural resources in non-optimized settings. Drawing68

upon earlier work (e.g., Dasgupta and Mäler, 2000; Arrow et al., 2012), Fenichel and Abbott69

(2014) provide a theoretical foundation for pricing of natural assets by deriving the revealed70

shadow price or accounting price of natural capital under general, non-optimized forms71

of management, and link their derivation to foundational contributions in economic capital72

theory (Jorgenson, 1963).3 In this and subsequent work with coauthors, they demonstrate the73

3See Fenichel, Abbott, and Yun (2018) for a detailed development of natural capital pricing. This
approach has subsequently been expanded to allow for the valuation of a portfolio of capital stocks whose
dynamics may be interlinked through physical or biological processes or via human behavior (Yun et al.,
2017). These methods have been used to value a range of natural capital stocks, from fish in single-species
fisheries (Fenichel and Abbott, 2014), groundwater (Fenichel et al., 2016; Addicott and Fenichel, 2019),
coastal habitat (Bond, 2017), an assemblage of interacting fish stocks (Yun et al., 2017), threatened species
in an ecosystem context (Maher et al., 2020).

4



necessary components of an accounting price for natural assets and develop and implement74

computational approaches to measure accounting prices. However, risk and uncertainty are75

notably absent from the theory and empirical work springing from this literature. This76

omission limits the ability to answer the question at the core of this paper – how does risk77

alter the valuation of natural capital when it is valued according to the principles of capital78

theory?79

We make progress on this research question by, first, expanding the theory of natural80

capital valuation to embrace stochasticity. The resulting equations provide intuition into81

the ways that risk can influence the total value provided by one or more capital stocks82

and marginal valuation – the “shadow price.” We also expand upon the computational83

approaches utilized in prior work to show how these valuations can be uncovered in the84

context of coupled bioeconomic models. Second, we deploy these approaches using simple85

examples from natural resource management, using optimized and non-optimized control86

rules to examine the qualitative and quantitative effects of risk on natural capital valuation.87

Intriguingly, we find that under a range of specifications and reasonable risk levels the effect of88

stochasticity on valuation is minimal – so minimal as to suggest risk can be safely ignored for89

valuation in similar applications. One commonality of these examples, however, is convexity,90

with a single stochastic steady state. Therefore, as our third contribution, we consider the91

implications of introducing stochasticity to systems with non-convexities and multiple stable92

states by examining total and marginal valuations for a canonical non-convex ecosystem93

– a renewable resource with a minimum viable population – under stochasticity. We find94

that non-convexity interacts with stochasticity in complex ways – potentially reversing the95

finding that risk “doesn’t matter” for valuation while also showing that the effects of risk96

on marginal valuation of natural capital are highly contingent on the stock level relative to97

critical threshold locations in the state space. In short, risk can depreciate investments in98

natural capital at some stock levels and raise the value of investments at others.99

The organization of the paper is as follows. The following section derives the shadow100
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price formulas for the single- and multi-stock cases. Section 3 demonstrates the valuation101

approach for a canonical, single-stock, stochastic control problem where the optimal co-state102

(i.e. accounting price) is available in closed form. This allows us to validate our approach103

and also allows us to isolate the effects of stochasticity from the effects of the choice of104

a sub-optimal control rule (economic programs) that may stem from heuristics for coping105

with stochasticity. Section 4 extends our approach to a stochastic version of the Gulf of106

Mexico reef fish case study examined in Fenichel and Abbott (2014). This case allows us107

to consider the impact of natural stochasticity in a real-world, non-optimal setting under108

conditions of convexity. Section 5 extends our analysis to non-convex settings, using the109

case of a harvested resource with a minimum viable population as an example. Section 6110

concludes the paper.111

2. Theory112

2.1. Derivation of shadow pricing formula113

Let s(t) represent the known stock of a scalar asset at time t.4 Suppose the dynamics114

of s are represented by a diffusion or Ito process with stationary infinitesimal parameters115

µ (s, x (s)) and σ(s). The diffusion process is written as116

ds(t) = µ (s(t), x (s(t))) dt+ σ(s(t))dZ(t) (1)

where dZ(t) is an increment of a Wiener process (Stokey, 2009). The drift of the diffusion117

µ (s, x (s)) is specified as a function of the current capital stock and as a function of the118

feedback control rule, known as the economic program or resource allocation mechanism,119

x(s). Once the substitution for the economic program has been made, the drift is an explicit120

function of only s.121

Let W (s, x) be an instantaneous measure of welfare. Importantly, the concavity prop-122

4t is suppressed when doing so does not cause confusion.
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erties of this function are quite general, allowing for the full range of risk preferences in123

“consumption” (x) and the resource stock. Define the intertemporal welfare function, eval-124

uated along the economic program and along the stochastic capital trajectory given by (1),125

as126

V (s (t)) = Et
[∫ ∞

t

e−δ(τ−t)W (s (τ) , x (s (τ))) dτ

]
(2)

where Et is the expectations operator. The marginal value of an investment in the capital127

stock in expectation is defined as p(s) ≡ Vs. To derive the properties of p(s), start by128

differentiating (2) with respect to t.129

dV

dt
= Et

[
δ

∫ ∞
t

e−δ(τ−t)W (·) dτ −W (s (t) , x (s (t)))

]
= δV −W (s (t) , x (s (t))) (3)

The first equality in (3) assumes that the derivative can be carried through the expectation130

operator, which is ensured by the stationarity of the infinitesimal parameters of (1). The131

second equality holds because the state of the system is known at τ = t.132

We know that dV
dt

= Et[dV ]
dt

. By Ito’s Lemma

dV =

[
µ (s)Vs +

1

2
σ2 (s)Vss

]
dt+ σ (s)VsdZ

Taking the expected value, and employing the property that all stochastic integrals are

identically zero (Stokey, 2009):

Et[dV ] =

[
µ (s)Vs +

1

2
σ2 (s)Vss

]
dt

so that133

dV

dt
=

Et[dV ]

dt
= µ (s)Vs +

1

2
σ2 (s)Vss (4)

Setting (3) equal to (4) we obtain the stochastic Hamilton-Jacobi-Bellman (HJB) equation:134
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135

δV (s) = W (s (t) , x (s (t))) + µ (s)Vs +
1

2
σ2 (s)Vss (5)

Substitute p(s) ≡ VS into the HJB equation yielding:136

δV (s) = W (s (t) , x (s (t))) + p (s)µ (s) +
1

2
σ2 (s) ps (s) (6)

The first two terms on the RHS are the traditional deterministic current-value Hamilto-137

nian. The third term captures the effect of risk even if the deterministic rate of change in138

the capital stock µ(s) = 0. The risk effect captures the effect of Jensen’s inequality via the139

curvature of the intertemporal welfare function. If the shadow price function is downward140

sloping then ps < 0 so that risk has a negative effect on the intertemporal welfare function.141

Importantly, the derivatives Vs and Vss in (5) (i.e. p and ps in (6)) are evaluated after142

substitution of a particular feedback control rule x(s), which in general need not optimize the143

HJB. The implication is that the slope, curvature, and higher derivatives of the intertemporal144

welfare function reflect, in part, the properties of this economic program. The one exception145

to this case is when the economic program is dynamically optimal. In this case the properties146

of the economic program play no role in the shape of the intertemporal welfare function.5147

Suppressing functional dependency on s, and differentiating (6) with respect to s yields:148

δp = Ws + µsp+ µps + σσsps +
1

2
σ2pss

Isolating p on the left-hand side we obtain the asset pricing equation:149

p(s) =
Ws + [µ(s) + σ(s)σs(s)]ps + 1

2
σ2(s)pss

δ − µs(s)
(7)

A parallel derivation of this pricing equation for the multi-stock case is provided in150

5See Section 2.3 for the mathematical and economic justification of this assertion.
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Appendix A.151

2.2. Intuition152

In the case where the variance of the noise in (1) does not depend on s then (7) reduces

to:

p(s) =
Ws + µ(s)ps + 1

2
σ2pss

δ − µs(s)

and if capital dynamics are deterministic or pss = 0 then this further reduces to

p(s) =
Ws + µ(s)ps
δ − µs(s)

which is the same as in Fenichel and Abbott (2014), who show that this equation is equivalent153

to Jorgenson (1963). The general asset pricing equation equation (7) contains two additional154

numerator terms relative to Fenichel and Abbott’s deterministic derivation. The first term155

enters in a way that is symmetric to capital gains in a deterministic system and depends on156

the extent of “risk aversion” embodied in the curvature of the intertemporal welfare function157

(since ps ≡ Vss) and the extent to which the standard deviation of the diffusion is elastic with158

respect to s. If increasing investment in s increases the size of shocks, and if the shadow price159

function is decreasing in the stock (analogous to risk aversion), then this results in a “capital160

loss.” This term only matters if the variance depends on the capital stock, as in the case of161

geometric Brownian motion. Importantly, curvature of the intertemporal welfare function,162

which is defined over the domain of the capital stock only, need not result from underlying163

curvature of the “social utility” or real income function for welfare flows W (·). Indeed, the164

nature of risk preferences over flows embodied in W (including risk neutrality) may have no165

direct mapping to the curvature of V (s). Curvature of the intertemporal welfare function166

can also be inherited from the underlying biophysical dynamics in (1) or from non-optimal167

economic programs x(s) – suggesting that the risk premia embodied in the numerator of168

(7) are endogenous to policy and may reflect actual existing levels of self-insurance and self-169

protection (Ehrlich and Becker, 1972). This first term pertains to how a marginal investment170
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in the capital stock increases risk, holding the curvature of the intertemporal welfare function171

constant.172

The second additional term in (7) is present with stochastic dynamics so long as the173

third derivative of the intertemporal welfare (or value) function is non-zero. There will be a174

premium if there is a positive third derivative (convex price function), while a negative third175

derivative (concave price function) yields a discount. If the value function is quadratic (i.e.176

zero derivatives above the second derivative), then this term is zero. Both additional terms177

in the numerator of (7) originate from differentiating 1
2
σ2(s)ps term in (6). This second term178

can be interpreted as the affect of a marginal increase in the capital stock on risk aversion,179

holding risk constant or interpreted as “prudence,” which is associated with precautionary180

savings (Kimball, 1990). If risk aversion is increased by the investment (Vsss = pss < 0)181

then the shadow price is decreased. In other words, the pricing of risk into the capital asset182

depends on how additional investment affects the sensitivity to risk, given the biophysical183

dynamics and economic program in place, in addition to how the marginal investment affects184

the risk itself. The former effect can be thought of as a “self insurance effect” because changes185

in the curvature of the intertemporal welfare function impact the consequences of stochastic186

events rather than their probability (Shogren and Crocker, 1999).187

Importantly, (7) tells us that risk will have no marginal effect on the valuation of natural188

capital when two conditions hold: 1) the volatility of risk is not a function of the capital189

stock (i.e. risk is “exogenous”); and 2) the shadow price function is linear (pss = 0), so that190

the intertemporal welfare function is quadratic. This coincides with well-known results in191

economic theory that optimizing agents facing exogenous shocks to their income will not192

alter their saving behavior in the presence of a mean preserving spread in risk if they have193

quadratic utility in consumption. In this case (7) collapses to the co-state equation for the194

deterministic case, so that optimal behavior is invariant to risk.6195

6The fact that these results are specified in terms of the third derivatives of the instantaneous utility
function (in consumption) rather than the intertemporal welfare function (in unit of savings or capital) is
because the linear properties of the growth function of capital in the simple savings problem, combined
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2.3. Optimized vs. non-optimized asset pricing196

In this section we demonstrate how non-optimal economic programs alter the marginal197

valuation of capital stocks, relative to the co-state evaluated along the optimal program. Let198

the non-optimal program for a given setup be x(s), while the optimized program is x∗(s). The199

intertemporal welfare function along the non-optimal economic program is V (s, x(s)) = V (s).200

The shadow price can therefore be written as:201

Vs =
dV

ds
=
∂V

∂s
+
∂V

∂x

dx

ds
(8)

By the maximum principle and as a consequence of the envelope theorem ∂V
∂x

= 0 when202

x(s) = x∗(s) ∀s. In this case (9) collapses to Vs = dV
ds

= ∂V
∂s

. This suggests that the shadow203

price can be cleanly broken into two terms: 1) the partial derivative of the value function204

w.r.t. s, which is present in the optimized case; and 2) a component that is only present205

in non-optimized cases, and that therefore reflects a “non-optimality bias” of sorts. This is206

almost correct but neglects to account for the fact that ∂V
∂s

is evaluated at the non-optimized207

value of x for a given s, whereas it is evaluated at the optimal x in the optimized case.208

To account for this, add zero in the form of ∂V (s,x∗(s))
∂s

− ∂V (s,x∗(s))
∂s

= ∂V ∗(s)
∂s
− ∂V ∗(s)

∂s
to (9)209

Vs =
∂V ∗(s)

∂s
+

(
∂V

∂s
− ∂V ∗(s)

∂s

)
+
∂V

∂x

dx

ds
(9)

This equation tells us that we can write the shadow price as the optimal shadow price210

(which is, by definition, evaluated at the optimal value of the economic program) plus a first211

“distortion term” that is the gap in the partial derivative of the value function that arises212

solely through the gap between x(s) and x∗(s) plus a final distortion term that is a function of213

the sensitivity of the non-optimized intertemporal welfare function to the economic program214

∂V
∂x

and the slope of the non-optimized economic program itself.215

with the selection of the optimal investment rule ensure that the shape properties of the utility function are
reflected in the intertemporal welfare (value) function as well. This mapping does not carry over to the case
of non-optimized control rules with non-linear drift terms, as in the case of most natural capital.
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The first distortion arises only because the partial derivative of V is being evaluated at a216

level of x that does not set marginal benefits equal to marginal costs inclusive of the shadow217

price at a given s. If the optimal and non-optimal economic program coincide at a particular218

s then this term vanishes. For example, suppose that the optimized and non-optimized219

economic programs both achieve the same steady state so that x(sSS) = x∗(sSS), then this220

term would vanish at the steady state stock. In general, if Vsx = 0 then this distortion term221

is zero.222

The second distortion term arises because of the slope of the non-optimal economic223

program, rather than its level. Note that the more non-optimal the economic program is –224

the larger ∂V
∂x

is – the larger this will be. Also, the more responsive the economic program225

is to the state – the larger dx
ds

is in absolute terms – the larger this distortion will be. We226

may also be able to sign the distortion. If, at the non-optimal level of x(s), it would improve227

intertemporal welfare to harvest less instantaneously and the economic program is upward228

sloping, then we know that the distortion is negative, causing sub-optimal management to229

lead to an undervaluation of the stock.230

3. An optimized single-stock example231

The asset pricing equation presented in the previous section is valid regardless of whether232

the economic program maximizes intertemporal welfare or not. Still, it is useful to build233

intuition for the role of risk in shadow prices from an optimized model. Simple optimized234

models may also confer the benefit of a closed form solution for the co-state, thereby allowing235

for a direct validation of the numerical approximation approach.7236

To provide this example, we draw upon a case developed in Pindyck (1984). In this sem-237

inal contribution, Pindyck extends the canonical infinite horizon, continuous-time renewable238

resource model for a single stock to allow for a stochastically evolving resource stock. The239

7Fenichel and Abbott (2014) follow a similar process in the deterministic case by evaluating how the
natural asset pricing approach works on a simulated optimal program.
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focus of the modeling is on revealing how the ‘golden rule’ of resource management is aug-240

mented by a risk premium term. Pindyck then explores how the biological and economic241

parameterization interacts with increases in risk to influence the optimal extraction rate and242

the stochastic steady state distribution.243

Our model draws directly on Pindyck’s example 1 (p. 296), which is also explored in244

Miranda and Fackler (2004, p. 330). Pindyck’s objective is to maximize the expected net245

present value of the combined consumer and producer surplus from harvest q of the fish246

stock s over an infinite horizon, where the demand function is isoelastic, q(p) = bp−η, and247

the marginal cost of harvest is cs−γ.8 Therefore, the social planner is risk-neutral in their248

assessment of flows of monetized instantaneous social welfare. Note, however, that these249

assumptions nevertheless imply that the instantaneous welfare function is strictly concave in250

harvest, implying aversion to any risk-induced fluctuations in harvest levels. The resource dy-251

namics evolve according to a diffusion characterized by a logistic drift function with stochas-252

ticity that follows a geometric Brownian motion process: ds = [rs (1− s/K)− q] dt+σsdZ.253

In general, this model must be solved numerically. However, Pindyck (1984) demonstrates254

that a closed form solution to the HJB equation exists when η = 1/2 and γ = 2. Specifically,255

the optimized co-state (or rent) is:256

Vs = φ/s2 (10)

and the optimized economic program (feedback control rule) is:257

x(s) = q∗(s) =
b

(φ+ c)1/2
s (11)

where258

φ =
2b2 + 2b[b2 + c(r + δ − σ2)2]1/2

(r + δ − σ2)2
(12)

8Pindyck uses x for the state variable, we have changed this to s to avoid confusion and align with
notation within this paper.
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Figure 1: Illustration the the natural capital asset pricing approximation approach reproduces known value
function and price curves for a stochastic system.

The resulting economic program (11) increases linearly in the stock. Such rules imply a259

constant (per-capita) rate of fishing mortality – what the fisheries literature calls a “constant-260

F” rule. This is a common harvest rule in natural resource management (Deroba and Bence,261

2008). Importantly, ∂φ/∂σ2 > 0. This implies that ∂x/∂x = ∂q∗/∂σ2 < 0 and ∂Vs/∂σ
2 > 0,262

meaning that increasing stochasticity in this model always increases the accounting price of263

the stock, thereby decreasing the optimal rate of harvest at every stock level.9264

We approximate the value function using an extension of the basis function approximation265

approach employed in Yun et al. (2017) as detailed in Appendix B.10 Figure 1 shows that266

we are able to reproduce the analytical value function and shadow price to a high degree of267

accuracy.268

Dynamic optimization in this example yields an economic program that reflects what we269

might term “uniform precaution” (Figure 2, black line). Increases in stochasticity lead to270

9The partial derivative of the economic program with respect to σ2 is a comparative static – the volatility
parameter is constant. This means that in a sense the risk profile is not changing over time or the system is
not becoming more or less risky.

10We use parameter values of σ = 0.1, δ = 0.05, b = 1, r = 0.5, and K = 1.
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a less aggressive harvest rate at all stock levels and therefore a larger ‘target’ steady state271

biomass. Pindyck shows that stock stochasticity has three competing effects in an optimized272

stochastic problem that may lead to more or less aggressive (less or more precautionary)273

harvest relative to the deterministic case. The first, a variance reduction effect, encourages274

the manager to hold a smaller stock due to the fact that the variance of stock increases in275

the stock size, and variance lowers the value function, which follows from the concavity of276

value function. This effect works through the first risk-specific numerator term in (7). The277

second, a cost reduction effect, encourages the manager to hold a smaller stock as variance278

increases due to the cost-increasing effects of stochastic fluctuations on expected harvest costs279

because of the concavity of the harvest cost function – an implication of Jensen’s inequality.280

Third, a growth rate effect encourages managers to hold more stock as variance rises because281

stochasticity reduces the expected growth rate of the stock, which follows from the concavity282

of the growth function. Both the cost reduction and growth rate effects operate through the283

second risk-specific numerator term in (7). Pindyck shows through a series of examples how284

the different effects can lead to more or less aggressive harvest, and hence higher or lower285

valuations, relative to the deterministic case, under risk. Of particular importance are the286

elasticity of demand and the skewness of the growth function.287

In practice, managers may choose to exercise more (or less) precaution than the level288

that maximizes Pindyck’s object. We reflect these adjustments through two scalar shifts of289

the economic program, where harvests are either systematically lower (purple line, half the290

optimal harvest at every point) or greater (red line, 1.5 times the optimal harvest at every291

point) than the optimizing program (black line) (Figure 2). These shifts lead to economic292

programs that are non-optimal everywhere and result in different stochastic equilibria. These293

deviations from optimality are reflected in the intertemporal welfare functions and accounting294

price functions.295

We also consider an economic program that deviates from the “constant-F” form (Figure296

2, blue curve) by being a convex function of the stock. This program is ‘adaptive’ in its297
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Figure 2: Stock-catch space showing the optimal harvest feedback rule and three alternative non-optimal
economic programs

degree of precaution by being more conservative at low stocks and more aggressive at high298

stocks.11 For the sake of comparison, we calibrate this control rule to have the same stochastic299

equilibrium as the optimal program. Therefore, the adaptive program is the optimal program300

if, and only if, the stock is at the stochastic equilibrium. The strong convexity of the301

adaptive program reflects an important feature of real natural resource management systems302

– managerial bias for system stability. In this case, the steady state probability distribution303

will have a lower variance than the optimal program. The shape of this control rule, but not304

its anchoring on the optimal steady state, is similar to the feedback process that Zhang and305

Smith (2011) estimate and Fenichel and Abbott (2014) use in their application to the Gulf306

of Mexico reef fish fishery.307

Figure 3 compares the intertemporal welfare and price functions for the scalar trans-308

11In fisheries management, this adaptivity is often accomplished in practice by distinct linear harvest
control rules that are each applicable within different stock thresholds–in essence a linear spline function.
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formations of the optimal harvest program for the stochastic (σ = 0.1, solid lines) and309

deterministic case (σ = 0, dotted lines). Importantly, the optimal and sub-optimal economic310

programs adjust for the value of σ according to the feedback rule in (11). The left-hand panel,311

showing the intertemporal welfare functions, shows that risk strictly reduces welfare. Risk312

has a similar effect across all three economic programs. Stochasticity appears to translate313

the intertemporal welfare functions down in a nearly constant manner (i.e. a location shift).314

This suggests that changes in welfare between stock levels – which are the relevant metrics315

for social benefit cost analysis and sustainability assessment – may be minimally affected316

by volatile stock dynamics. The first column of Table 1 considers the welfare change for a317

relatively large perturbation in stock from 0.37 to 0.57. Regardless of whether we consider318

the optimal or sub-optimal programs, we find that the change in welfare from a stock shift is319

3 percent greater in the stochastic case relative to the deterministic case, despite substantial320

volatility. Therefore, ignoring stochasticity may systematically undervalue changes in nat-321

ural capital. However, our example indicates that this bias may be small in some cases.12
322

Indeed, we find that the changes in measured welfare across the three economic programs –323

holding stochasticity constant – are much more sizable than the effects of ignoring stochastic-324

ity. This suggests that the behavioral or managerial responses to stochasticity (i.e., excessive325

or inadequate precaution that push the system toward a sub-optimal equilibrium) may be326

more consequential for welfare than the effects of stochasticity itself.327

Given the apparently near-vertical translations of the intertemporal welfare functions328

from introducing stochasticity, it unsurprising that risk has a muted effect on the accounting329

price functions (Figure 3). This is a direct effect of the price being the first derivative of the330

value function. The effect of stochasticity on the shadow price is hardly noticeable. For the331

optimal program and its scalar multiples, price always increases in stochasticity. However,332

12We find that employing the program associated with deterministic dynamics to a system with stochastic
dynamics has a small effect. Using the “wrong” program can either lead to a larger or small assessment
of the welfare change, relative to using the stochastic program. This is due to second-best nature of these
feedback rules.
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Figure 3: The intertemporal welfare (value) function and shadow price curves for optimal program and two
scalar shifts of the optimal program with stochastic and deterministic dynamics.

stochasticity has only a second-order effect on marginal values – hardly surprising given the333

small welfare effects of stochasticity for non-marginal stock changes (which integrate under334

the price curve) noted in the previous paragraph. 13
335

Now consider the adaptive economic program (Figure 4), which mimics the asymmetric336

precaution observed in the management of many harvested resource systems. This added337

precaution ensures a greater degree of stability relative to linear feedback rules.14 Impor-338

tantly, this rule has the same steady state as the optimal control rule, so all differences are339

due to the sub-optimal approach path and its potential interactions with stochasticity. As340

before, the most apparent effect of introducing stochasticity to the adaptive economic pro-341

gram is a downward shift in the intertemporal welfare function. However, there are subtle,342

but important differences relative to the optimal (linear) control rule case.343

In the deterministic case (dashed curves), the intertemporal welfare value in the region344

13Stochasticity has no effect on the approximation error of welfare changes introduced by using a price
index over the change multiplied by the change in quantity (Table 1). The use of price indexes is likely
necessary in applied wealth accounting approaches for sustainability assessment. The Fisher Ideal price
Index is the geometric mean of prices. The Mean price Index is the arithmetic mean of prices.

14This may suggest managerial risk aversion or unobserved adjustment costs.
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Table 1: Comparison of the change in welfare and the change in wealth using two different index number
approaches. The Fisher Ideal index is the geometric mean of prices, and the Mean price index is the
arithmetic mean of prices. The price index is multiplied by the change in quantity.

Program Change Fisher %error Mean %error
in Ideal Price

Welfare Index Index
Optimal rule with determinis-
tic dynamics

15.920 15.920 0.000 17.373 0.091

Optimal rule with stochastic
dynamics

16.405 16.405 0.000 17.902 0.091

Adaptive rule with determinis-
tic dynamics

17.110 16.901 -0.012 18.873 0.103

Adaptive rule with stochastic
dynamics

17.730 17.517 -0.012 19.553 0.103

Scalar rule, 0.5 of the opti-
mum, with deterministic dy-
namics

20.855 20.855 0.000 22.758 0.091

Scalar rule, 0.5 of the opti-
mum, with stochastic dynam-
ics

21.497 21.497 0.000 23.459 0.091

Scalar rule, 1.5 of the opti-
mum, with deterministic dy-
namics

19.081 19.081 0.000 20.822 0.091

Scalar rule, 1.5 of the opti-
mum, with stochastic dynam-
ics

19.692 19.692 0.000 21.489 0.091

of the equilibrium is approximately the same under the adaptive and optimal programs345

(indeed, identical at the equilibrium itself). Therefore, small changes in the stock in this346

region result in near-identical welfare changes under either program. It is only as the system347

moves significantly from the equilibrium that there is a meaningful divergence between the348

intertemporal welfare functions in a deterministic system. By contrast, when the system is349

stochastic, the intertemporal welfare function under the adaptive program is always below350

that of the optimal program – even at the stochastic steady state biomass. This occurs351

because even at the equilibrium point there is an expectation of a shock that will move the352

system to a region where the adaptive program is meaningfully sub-optimal.353

These features are reflected in the shadow price curves (Figure 4, right panel). The354
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Figure 4: The intertemporal welfare (value) function and shadow price curves for the optimal program and
a non-optimal adaptive “precautionary” economic program that preserves the stochastic equilibrium under
stochastic and deterministic dynamics.

shadow price curves cross at the equilibrium. This must be the case in the deterministic355

model for the adaptive program to be sub-optimal everywhere except at the equilibrium;356

it is required for the intertemporal welfare function of the adaptive program to “bow in”357

relative to the optimal program’s value function. This feature is inherited in the stochastic358

setting as well.359

Despite these subtleties, the shadow price curves for the deterministic and stochastic360

dynamics for the adaptive precautionary economic program remain remarkably similar (2.7361

% mean absolute error). Once again, the first order effects for valuation derive from the362

choice of the economic program – not from the introduction of stochasticity.363

The analysis of Pindyck’s model suggests that stochasticity may be, at most, a second-364

order concern for social benefit-cost analysis or sustainability assessment in some settings.15
365

This appears in sharp contrast to much of the literature’s broader concern with stochasticity,366

15Lest the reader think we are cherry-picking an extreme example to minimize stochasticity, Pindyck’s
example 2 in the same paper replaces the logistic growth function with a Gompertz growth function to
show that risk has no effect on shadow prices, and hence no effect on changes in welfare, in the optimal
management case.
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risk, and uncertainty. In the next section, we investigate a real-world system that that has367

similar features to the Pindyck model to see if these findings are robust to real-world, non-368

optimized management.369

4. Gulf of Mexico (GOM) Reef Fish370

The Gulf of Mexico reef fish example presented in Fenichel and Abbott (2014) has many371

of the same properties as the Pindyck (1984) model. Zhang and Smith (2011) estimated a372

logistic growth equation for the stock, and Zhang (2011) estimated an empirically-grounded373

feedback rule with similar properties as the adaptive rule illustrated in prior section – though374

Zhang’s rule is not calibrated to achieve the optimal equilibrium (Figure 5).375

We extend this deterministic model to the stochastic case while maintaining all other376

calibrated values. As in Pindyck, we augment the logistic stock dynamics with an additive377

geometric Brownian motion (GBM) noise term. Geometric Brownian motion is consistent378

with the assumptions of log-normal disturbances frequently used in population dynamic379

modeling and fisheries stock assessment. Utilizing the assessed biomass data from the fishery380

we calibrate σ = 0.067; therefore the standard deviation from the deterministic drift given381

by the logistic growth equation with harvest is approximately 6.7 percent of the stock level.382

The stock dynamics are:383

ds =

(
rs(t)

(
1− s(t)

K

)
− h (x (s (t)) , s (t))

)
dt+ σs(t)dZ(t), (13)

where the intrinsic growth rate r = 0.3847 and carrying capacity K = 3.59 × 108. The384

economic program, the feedback relationship linking stock status (in pounds (lbs)) and effort385

(in crew-days) in the fishery, is provided by a power rule, x(s) = ysγ, where γ = 0.7882 and386

y = 0.157. We assume that the valuation of income flows in the fishery is directly expressed387

in terms of monetary profits, with price-taking firms and costs that are linear in effort:388

W = mh − cx, with m = $2.70/lb., c = $153/crew-day. Thus instantaneous welfare is389

“risk-neutral” in monetary flows. The production function for harvests is of a generalized390
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Figure 5: The growth function and economic program for the Gulf of Mexico model.

Schaefer form h = qsx (s)α, with q = 3.17 × 10−4 and α = 0.544. W (s) is a strictly convex391

function of the stock once the endogenous feedback from the stock level to harvest behavior392

x(s) is incorporated, despite the linearity of harvests and costs for a fixed allocation of effort393

x. Abstracting from stochasticity, Figure 5 shows the dynamics of the system are similar to394

the Pindyck model with the adaptive control rule.395

4.1. Stock Dynamics396

Figure 6 illustrates stochastic simulations of stock paths originating from the steady397

state biomass and harvest under four levels of stochasticity. The level of noise introduced398

by stochasticity in the base case (Fig. 6a) is reminiscent of the noise seen in many ecological399

systems. While extinction is technically impossible in continuous time, using the current400

economic program and geometric Brownian motion, our numerical simulations nevertheless401

show that the number of paths that tend to a numerically zero level increase dramatically402

with increases in σ. Indeed, all paths reach numerical extinction within 20 periods when403

σ = 1.0. This suggests that levels of σ of 0.5 or 1.0 are likely inconsistent with the dynamics404

of most real-world species. Dixit and Pindyck (1994) provide a similar example where they405

argue that volatility can only be so high given a reasonable probability of observing the stock406

at all.16
407

16We thank Martin Quaas for bring this to our attention.

22



(a) σ = .067 (b) σ = .2

(c) σ = .5 (d) σ = 1

Figure 6: Stochastic simulations of stock dynamics over a range of values for σ. Note that the values for
σ = 1 exceed the range of the graph on a number of runs.
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Figure 7: The intertemporal welfare or value function and shadow price or account price function of the Gulf
of Mexico reef fish example with four different values of σ

.

4.2. Value Function and Shadow Price408

Unsurprisingly, increasing levels of volatility reduce the intertemporal welfare shown by409

the graph of the value function (Figure 7). Following Eq. (6) and the Pindyck example,410

the value function in the stochastic case includes an additional risk term that serves, in411

part, to shift the value function downward with increasing stochasticity. In the current412

case, the value function is concave in s (i.e. the shadow price curve is downward-sloping)413

so that increasing σ reduces the expected net present value at any given stock level. This414

adjustment is small (% error for price curves to the deterministic is 0.1, 0.9, 1.6, and 4.6415

for each σ) for the empirically-justified, and objectively fairly large, level of stochasticity in416

our system (σ = .067) – suggesting that the economic program is fairly robust to the level417

of stochasticity in the system by maintaining stock levels in a relatively insensitive range of418

the profit function.419

Higher-order effects on the shape of the value function with increases in σ exist, but are420

small. Changes in the shadow prices (i.e. the derivative of the value function) are hardly421

noticeable (Fig. 7, right panel) and suggest the volatility is creating a nearly vertical shift in422
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the value function. Thus, while risk devalues the stock in total (albeit mildly), stochasticity423

has little appreciable effect on its marginal valuation. Lost in the small magnitude of these424

changes is a potentially interesting insight; whereas in the Pindyck example, increasing risk425

increases the marginal valuation of the stock, in this case risk lowers the shadow price.426

Consider the value of a change from the observed equilibrium to the stock level supporting427

maximum sustained yield or half of carrying capacity. The change in the value function428

for the deterministic case is $244 million, whereas in the stochastic case the value is $243429

million.17 As expected, given the aforementioned effect of risk on marginal valuations, use of430

the deterministic system as a proxy for the stochastic system appears to overvalue the change431

in welfare or wealth slightly. This differs from Pindyck’s optimized example, where failure to432

consider risk leads to a slight undervaluation of the value of stock changes. Whether under-433

or overvaluation is more likely ultimately depends upon the bioeconomic parameters.434

On the whole, the Gulf of Mexico case reinforces the intuition developed by the Pindyck435

example in the context of a real world, well-calibrated system governed by non-optimized436

control rules. Risk appears to be a decidedly second-order feature for achieving accurate437

valuations of either marginal or non-marginal changes in natural capital stocks. We conjec-438

ture that a key feature of both the Pindyck model and the GOM example that support this439

result is the existence of a single stochastic equilibrium. The next section develops a simple440

counterexample to explore the implications of thresholds and alternative stable states on441

natural capital valuation.442

5. GOM Reef Fish with Minimum Viable Population443

There is a substantial literature on multiple equilibria (reviewed by Fenichel et al. (2015)),444

but this literature largely focuses on deterministic models to examine how the optimal pursuit445

of alternative long-run equilibria depends on initial conditions. Fenichel, Abbott, and Yun446

17Using the Fisher Ideal index the change in value for the deterministic and stochastic cases are both $245
million and using a mean price index both are $250 million. In both cases there are difference of less than
$1 million.
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(2018) argue that the mathematical difficulties caused by multiple equilibria for valuation447

purposes – where the economic program is typically pre-determined, and the relevant basin(s)448

of attraction are therefore known – are lessened compared to optimally controlling a system449

in the presence of non-convexities. However, introducing stochasticity to such a system450

brings with it the possibility of the system probabilistically entering or leaving one basin of451

attraction for another at a rate that is endogenous to the place in state space. The qualitative452

and quantitative effects on the value of the capital stock are potentially complex and poorly453

understood. As a simple example, we extend the Gulf of Mexico reef fish example to consider454

a canonical example of non-convexity, a harvested system under critical depensation.455

5.1. Stock Dynamics456

Maintaining the same harvest and profit function as before, we now adopt the following457

cubic growth function:458

ds =

(
rs(t)

(
s(t)

K1

− 1

)(
1− s(t)

K

)
− h (x (s (t)) , s (t))

)
dt+ σs(t)dZ(t), (14)

where K is the same carrying capacity (3.59 × 108) as given in Equation (13) and K1 is459

the minimum viable population (setting as 10 % of K). This value is set for illustrative460

purposes, and is not based on data. Figure (8) shows the growth function and economic461

program in panel (a) and the trajectories of stock, given different initial conditions, in panel462

(b) under deterministic conditions. Note that there are now three bioeconomic equilbria:463

one stable equilibrium at extinction, a stable steady state at about 295 million pounds, and464

an unstable steady state at about 65 million pounds. This unstable steady state – not the465

critical minimum viable popoulation of K1 – marks the boundary between the basins of466

attraction for the two stable equilibria.467

5.2. Value Function and Price Approximation468

Approximation of shadow prices using basis function approximation techniques (Ap-469

pendix B) for this non-convex case has proven highly unstable. Therefore, to approximate470
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(a) Cubic growth and economic program (b) Phase diagram of the drift term

Figure 8: The cubic growth function and economic program and phase diagram for the cubic GOM reef fish
model

the value function, we employ a straightforward but computationally intensive forward sim-471

ulation method over a dense grid of 600 starting stock values to estimate the value function472

18. For each value of stock, we first generate 100,000 stochastic stock dynamics according473

to (14) using 800 time steps over 0.1 year intervals. We then calculate the numerical sum474

of the present value of profit for each trajectory, which is the Riemann sum to numerically475

approximate an integration with a midpoint rule. We then average over these 100,000 sim-476

ulated value functions to obtain the expected value function shown in the top of Figure (9)477

for the deterministic case and three different levels of volatility.478

To derive the shadow price functions, we fit a flexible approximation to the dense grid of479

value function simulations and then differentiate this approximation. Specifically, we first use480

the cubic spline to approximate the value function at the 500 Chebyshev polynomial nodes481

using the simulated values from the brute force approximation. Then, we approximate the482

18A similar approach was suggested by (Hamilton and Ruta, 2009)

27



value function using an 80th order Chebyshev polynomial approximation. Exploiting the an-483

alytical differentiability of Chebyshev approximations, we use this functional approximation484

to approximate the shadow price function as shown in the bottom of Figure 9.19
485

The forward simulation approach is extremely robust in its ability to recover the expected486

intertemporal welfare function at any point in the approximation domain in the presence of487

strong non-linearities and stochasticity – subject only to the simulation error associated with488

the numerical simulation of stochastic differential equations and Monte Carlo integration,489

though it is not elegant or efficient. In principle, basis function approximation methods490

using collocation methods (i.e. where approximation nodes are equal to the number of basis491

coefficients to recover) exactly satisfy the HJB equation at all approximation points and492

utilize the flexibility of the semiparametric structure of the basis coefficients to interpolate493

between these coefficients – in essence solving the forward simulation at any point in the494

approximation domain without laborious simulations at every grid point (Fenichel, Abbott,495

and Yun, 2018).20. However, in practice we have found that basis function approximation496

approaches, at least using Chebyshev polynomials, perform poorly at approximating the497

highly non-linear shape of the intertemporal welfare function when levels, first, and second498

derivatives are required. Approximations are particularly poor in the highly curved (and in499

the deterministic case discontinuous) region around the unstable equilibrium. Furthermore,500

attempts to improve the quality of approximation in this region through placement of nodes501

or the use of additional basis functions often resulted in degeneration of the quality of the502

approximation in the more distant portions of the approximation domain from the unstable503

equilibrium.504

It is possible that local, as opposed to global, approximation approaches (e.g., splines)505

combined with careful placement of nodes may overcome these difficulties. However, any506

19Appendix C provides a comparison of functional approximation using Chebyshev basis coefficients to
the brute force approach.

20Approximation using an overdetermined system (i.e. more nodes than coefficients) does not guarantee
exact approximations at any point, but rather trades off approximation error at all points (Fenichel, Abbott,
and Yun, 2018)
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functional approximation method must ultimately grapple with the fact that the value func-507

tion, lacking an analytical solution for such complex non-linear cases, is unknown – leaving508

open the question of the quality of the approximation in the absence of a known true value.509

Therefore, in order to provide robust estimates of asset values while establishing these “true”510

values (subject to the bounds of simulation error), we utilize the forward simulation approach511

in the following results. While laborious, advances in computing – particularly cost-effective512

parallel processing – allow the forward simulation approach to be a reasonable alternative.513

5.3. Results514

Figure 9 shows the value function under varying degrees of risk. To understand the effect515

of risk, it is useful to first understand the properties of the deterministic value function.516

First, the value function is indeterminate at the unstable equilibrium biomass, reflecting two517

potential trajectories in response to an infinitesimal shock. A “rightward” shock commits518

the system to harvests along the economic program as the stock builds to the upper stable519

equilibrium. The result is a concave and increasing value function in this basin of attraction,520

which is reflected through a uniformly positive but downward sloping price curve. Con-521

versely, a “leftward” shock commits the system to a an inevitable drawdown of the stock522

to exhaustion.21 As a result, the value function in this basin of attraction is convex and523

increasing in the stock. This is reflected through an increasing, albeit low, shadow price.524

Furthermore, the value function experiences a dramatic decline to the left of the threshold525

biomass, reflecting a truly catastrophic devaluation. This devaluation is also experienced at526

the margin, with the marginal valuation of the stock as an investment plummeting once the527

system is committed to the “drawdown” equilibrium.22
528

21Note that the economic program at very low stock levels is perhaps unrealistic, forcing fishing at low
levels even when profits are negative (as in a heavily subsidized fleet) so that the value function actually
becomes negative, even though this is difficult to perceive from the figure.

22While the context of this example is not one of optimization (the economic program is pre-determined), it
is nevertheless clearly the case that if a social planner could pick a basin of attraction from the perspective of
expected discounted profit maximization – in the sense of being pre-committed to the non-optimal economic
program once landing in either basin – they would prefer the basin corresponding to the stable upper
equilibrium to the extinction equilibrium. In other words, the value function is uniformly higher at all stock

29



(a) Value Function

(b) Shadow Price

Figure 9: Value function and shadow price of cubic growth GOM Reef Fish

30



Turning to the effects of risk, it is apparent that the addition of risk to this non-convex529

system has qualitative and quantitative impacts on the valuation of natural capital – in total530

and at the margin. Focusing on the intertemporal welfare function, the former discontinuity531

at the unstable equilibrium biomass is replaced by value functions that assume the shape of532

a logistic curve – with an inflection point at the unstable equilibrium. The steepness of the533

central portion of the logistic curve declines as risk increases – acting to homogenize values534

on either side of the threshold relative to the deterministic case. Intuitively, this effect arises535

because in a small neighborhood on either side of the threshold biomass, GBM stochasticity536

of the biomass acts symmetrically, either to throw the system into the “drawdown” basin537

from the “sustainable fishing” basin or vice versa. The result is a smoothing of the value538

function, where the extent of the smoothing increases in the level of stochasticity.539

The effect of this risk-driven smoothing on the HJB equation is distinct depending upon540

the basin of attraction. For values of stock above the threshold value, risk leads to a negative541

risk adjustment term in the HJB equation (2.1), which is sensible given the concavity of the542

value function in this region. However, the opposite occurs below the threshold biomass,543

so that risk increases intertemporal welfare, given the concavity of the value function. In-544

tuitively, the possibility of “good” shock to either rescue the fishery from the drawdown545

basin or maintain system dynamics near the threshold leads to“risk loving” in valuation in546

this region. Importantly, the risk premia/discounts to the HJB are at their largest in the547

immediate vicinity of the threshold and deteriorate as stocks move away from the threshold548

and the long-run value of the system is less influenced by the possibility of switching basins549

of attraction. This zone of influence grows in the magnitude of risk, and it persists over550

a wider range in the “sustainable fishing” basin due to the fact that the variance of GBM551

shocks increases in stock size.552

The effects on shadow prices mirror those for the intertemporal welfare function. Shadow553

prices under risk are now roughly bell-shaped, with risk serving to homogenize marginal554

levels above the unstable equilibrium relative to below it. This need not be the case in all settings.
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valuations of investing in natural capital on either side of the threshold. Marginal valuations555

consistently peak at the threshold biomass itself and decline in either direction, with the556

rate of decline falling as stochasticity increases. Increasing levels of risk act to homogenize557

marginal valuations over a wider range of values, as reflected in the increasingly linear558

section of the value function in the region of the threshold. Each shadow price curve has559

a concave region, centered around the threshold biomass level, with two convex regions on560

either side. Concavity/convexity of shadow prices relate to the signs of third derivatives561

of the intertemporal welfare function. In other words, the qualitative effect of the second562

risk-related numerator term in the shadow price equation (7) varies across the domain of the563

stock. Within a “zone of influence” of the threshold, Vsss = pss < 0, so that risk (apart from564

the endogenous risk effect) tends to undermine the value of marginal investments in natural565

capital. In other words, the influence of the threshold induces a form of “anti-prudence” or566

“negative self-insurance” with respect to the valuation of the stock. This occurs because of a567

“lottery effect” that implies that as volatility increases current holdings of capital have less of568

an effect on future holdings of capital, which reduces the importance of the tradeoff between569

harvest today and future opportunities. The effect of the lottery in terms of one’s “destiny”570

tends to countervail any “self-insurance” benefits of investments in natural capital. Outside571

of this zone of influence, however, the sign of this term reverses, yielding higher valuations572

reflecting a degree of prudence.23
573

The ultimate effect of all these margins on the effect of risk on marginal valuations is574

complex, depending strongly on the level of risk and the stock level. For a region just above575

the threshold biomass, adding risk unequivocally reduces the marginal valuation of capital.576

However, there is a biomass level at which risk has no effect on marginal valuation. Beyond577

this point the gap between the stochastic and deterministic marginal valuation expands and578

then contracts, although the shadow price under stochasticity always exceeds the determinis-579

23The “endogenous risk” effect is likewise asymmetric on either side of the threshold, with the effect
increasing shadow prices below the threshold and decreasing them above the threshold.
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tic level. With respect to stock levels below the threshold level, things are more simple. Risk580

consistently increases the marginal value of the stock relative to the deterministic case since581

holding more natural capital increases the chance of escaping the lower basin of attraction.582

Finally, greater levels of risk do not have monotonic effects on the marginal valuation of583

risk. Figure 9 clearly demonstrates that the stochastic shadow value curves cross in both584

basins of attraction. Therefore, near the threshold stock, marginal valuation of natural585

capital falls as stochasticity increases – essentially showing the growing dominance of the586

“lottery” effect of risk viz a viz the threshold. Yet this effect is reversed at low and high587

stocks beyond this zone of influence so that risk actually increases the value of investing in588

the stock – again, reflecting the role of prudence in the second risk term of the asset price589

equation (7).590

While stochasticity and non-convexity may have little influence on valuation indepen-591

dently, the presence of such large and complex valuation effects in such a simple model592

suggests that it is the interaction between stochasticity and non-convexity that is important593

to understand.594

6. Conclusion595

Risk alters the valuation of real assets in two ways. First, investing in capital influences596

the strength of volatility via an endogenous risk effect. This increment in volatility is valued597

through the risk aversion (or risk seeking) as embodied in the curvature of the intertemporal598

welfare function. Second, investments may alter the curvature of the intertemporal welfare599

function itself, reflecting a form of endogenous risk aversion. Importantly, this risk aver-600

sion and its rate of change are not primitive features of underlying social preference, rather601

they are induced intertemporal preferences over capital stocks reflecting characteristics of602

the instantaneous welfare function, the dynamics of capital accumulation, and the economic603

program providing a feedback rule between capital stocks and consumption and investment604

behavior. The behavioral implications of these valuation effects of risk have been extensively605
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cataloged in the macroeconomic literature – albeit primarily in the special case of dynami-606

cally optimal investment behavior, where the role of the economic program is obscured. The607

“dual” problem of understanding how risk influences the valuation of real assets, conditional608

on their management, has received far less attention.609

Nowhere is the need to focus on the valuation implications of risk more important than610

in the case of natural capital, where absence of capital markets, market and governance611

failures, and sub-optimal management undermine market-derived and optimization-driven612

valuation approaches alike. Two unique features of natural capital – its non-linear process613

of accumulation (i.e. non-linear drift) and its often sub-optimal management – are likely to614

operate upon the risk terms in the asset pricing equation in subtle and important ways that615

may be distinct from those seen in the macroeconomic consumption-investment literature616

dominated by linear accumulation rules and dynamically optimal behavior. Through analysis617

of simple examples, we have shown how stochasticity influences total and marginal valuations618

of natural capital stocks, assessing the magnitude and direction of its effect.619

Despite the rich manner in which risk theoretically influences the valuation of natural620

assets, our investigation of the single-stock, logistic model with GBM shocks found that621

stochasticity has only a minor impact on measures of changes in wealth for marginal and622

non-marginal perturbations to capital stocks along predetermined economic programs. This623

result is robust across optimized and non-optimized settings and for quite high (arguably624

unrealistic) levels of volatility. These results illustrate that the two risk terms can act in a625

countervailing fashion, so that the qualitative effect of risk is unclear a priori. It is possible626

that in a number of cases that these effects may approximately cancel out.24 While our results627

are far from exhaustive, the weak effects of risk in a canonical resource model across a range628

of optimal and non-optimal control results suggests that risk may be a truly second-order629

concern in some important cases.630

The statement that risk may be a non-issue for valuation is strongly qualified by our631

24Indentifying these conditions is an area of important future research.
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findings for our canonical example of a highly nonlinear resource system with alternative632

stable states. In this case we find strong and complex effects on the valuation of natural633

capital in the region of the transition between basins of attraction, where the zone of this634

influence will scale with the magnitude of the risk. Finally, the magnitude and direction635

of the bias from ignoring risk is likely to depend on the location of the stock within state636

space. These results highlight the importance of grounding natural capital valuation in the637

context of bioeconomic models that clarify the nature of risk’s influence on valuation and638

the connections among natural dynamics and the revealed economic program.639

The question of the effect of risk and uncertainty on natural capital valuation is quite640

broad in scope, and will require a research program to satisfactorily answer. Our pursuit641

of this question is meant as a starting place and is therefore narrow in focus, with several642

notable restrictions. First, we focus exclusively on risk, where stochastic processes have643

known probabilities. We therefore ignore concerns of ambiguity or Knightian uncertainty.644

Secondly, our theoretical derivations and examples are cast in continuous time and only645

describe stochastic processes that can be written as diffusions (i.e., Ito processes). Within646

this class of diffusions, we have limited our attention to GBM processes, whereas a range of647

other stochastic processes may offer unique insights. Furthermore, economic programs are648

likewise continuous in time and are functions of contemporaneous state variables. Distinct649

insights that might arise from consideration of discontinuous shocks (e.g., Poisson shocks)650

or delayed responsiveness to noisy measurements of the system. Thirdly, we focus solely651

on stochasticity in stock dynamics. While such “process error” is a significant concern in652

natural resource management, it is far from the only place where risk may be important. For653

example, one may be concerned about “implementation error” in the economic program, so654

that the intended management actions are only implemented approximately. This is of course655

closely related to specification error - a common concern in econometrics. Finally, while we656

derive asset pricing equations for multiple correlated natural capital stocks (Appendix A),657

our theoretical and empirical focus is solely on the single-stock case. Thus the limitations of658
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our analysis demonstrate the many profitable avenues for elucidating the ways in which risk659

should alter our valuation of natural assets.660
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Appendix A. Multi-stock derivation of valuation formulae661

Let s(t) ∈ RS and x(s(t)) : RS → RXand extend the diffusion in (1) to S distinct Ito662

processes663

dsi = µi (s,x (s)) dt+ σi(s)dZi(t) for i = 1, . . . , S (A.1)

The dZi(t) can be correlated with a S × S correlation matrix ρ such that the covariance of664

the stochastic components of capital stocks i and j, which may differ from their observed665

covariance in-sample due to the presence of deterministic relations between the stocks in666

(A.1), is Et [σi(s)dZi(t)σj(s)dZj(t)] = σi(s)σj(s)Et [dZi(t)dZj(t)] = σi(s)σj(s)ρijdt. If i =667

j, then the expression simplifies to σi(s)2dt.668

While the decomposition of the noise into a correlation matrix and standard deviations is669

intuitive and useful for model parameterization, we work directly with the covariance matrix670

to conserve on notation. Let Ω(s) be a S × S covariance matrix of the noise terms such671

that Cov(dsi, dsj) = Ωij(s) dt. A Cholesky decomposition of the covariance matrix yields672

Ω(s) = ω(s)ω(s)′.25
673

Redefine the instantaneous return functions and intertemporal welfare functions in the

multi-stock case as W (s (t) ,x (s (t))) and V (s(t)). Once again, we know that dV
dt

= Et[dV ]
dt

.

Applying Ito’s Lemma (Dixit and Pindyck, 1994) yields:

dV (s) =

[
S∑
j=1

µj (s,x (s))Vsj +
1

2

S∑
j=1

S∑
k=1

Ωjk(s)Vsjsk

]
dt+

S∑
j=1

σj(s)VsjdZ
j

Finding the expected value and dividing through by dt:674

dV

dt
=

Et[dV ]

dt
=

[
S∑
j=1

µj (s,x (s))Vsj +
1

2

S∑
j=1

S∑
k=1

Ωjk(s)Vsjsk

]
(A.2)

25This approach generalizes (A.1) slightly by technically allowing for the correlation matrix - not just the
standard deviations - to vary in the stock vector.
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Setting (A.2) equal to the multidimensional generalization of (3) yields the HJB equation.675

δV (s) = W (s (t) ,x (s (t))) +

[
S∑
j=1

µj (s,x (s))Vsj +
1

2

S∑
j=1

S∑
k=1

Ωjk(s)Vsjsk

]
(A.3)

Partial differentiation of (A.3) yields the following expression for the shadow price of si676

pi(s) =
Wsi +

(
∂pi

∂si
µi +

∑S
j 6=i

∂pj

∂si
µj
)

+
∑S

j 6=i p
jµj

si
+ 1

2

∑S
j

∑S
k

(
Ωjk
si
∂pj

∂sk
+ Ωjk ∂2pj

∂sk∂si

)
δ − µi

si

Factoring the final numerator term yields the final asset pricing equation.

pi(s) =

[
Wsi +

(
∂pi

∂si
µi +

S∑
j 6=i

∂pj

∂si
µj

)
+

S∑
j 6=i

pjµj
si

+
1

2

S∑
j=1

(
σ2j
si
∂pj

∂sj
+ σ2j ∂

2pj

∂sj∂si

)

+
1

2

S∑
j=1

S∑
k 6=j

(
Ωjk
si
∂pj

∂sk
+ Ωjk ∂2pj

∂sk∂si

)]/(
δ − µisi

)
(A.4)

The first numerator term in (A.4) has the same interpretation as in the single-asset case. The677

next two terms in the numerator are present in the deterministic multi-asset case (Yun et al.,678

2017) and are forms of “capital gains.” The second numerator term
(
∂pi

∂si
µi +

∑S
j 6=i

∂pj

∂si
µj
)

679

reflects the effects of investment in si on the shadow price of stock i due to its prices of all680

assets in the portfolio (i.e. “price effects”). The third numerator term
∑S

j 6=i p
jµj

si
captures681

the deterministic effects of investment in stock i on the physical growth rates of all other682

stocks (“cross-stock effects”), which can stem from system ecology or production interactions683

within the economic program.684

The additional numerator terms in (A.4) only exist in the stochastic case. The third685

term 1
2

S∑
j=1

(
σ2j
si
∂pj

∂sj
+ σ2j ∂

2pj

∂sj∂si

)
operates solely through the individual variances of each686

asset and captures the “risk sensitivity” effect of an investment in asset i on the variance687

of each asset, σ2j
si
∂pj

∂sj
. This part of the term reflects how substitution and complementarity688

relationships can provide “self-protection” through “portfolio diversification,” which is the689
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endogenous risk concept. Importantly, the σ2j ∂2pj

∂sj∂si
term represents prudence and accounts690

for the fact that investments in i also affects the sensitivity to risk for all S assets, σ2j ∂2pj

∂sj∂si
,691

even if the variance for these other assets remains unchanged by the investment. This means692

that this term influences the consequences of stochastic events, and can be thought of as a693

self-insurance term. Together, these terms mirror the numerator terms, σ(s)ps + 1
2
σ2(s)pss,694

in (7).695

The final term in the numerator of (A.4), 1
2

S∑
j=1

S∑
k 6=j

(
Ωjk
si
∂pj

∂sk
+ Ωjk ∂2pj

∂sk∂si

)
, reflects the696

risk-related effects of investing in asset i that are mediated through the covariances of assets697

in the portfolio. This term is zero in the case that natural capital stocks are uncorrelated698

regardless of the vector of capital stocks. Ωjk
si
∂pj

∂sk
is the effect of an investment in i on the699

covariances between other assets j, k as valued through the first cross-partial between these700

assets (i.e. the 2nd cross-partial of the intertemporal welfare function). If the covariances701

between asset stocks are invariant to capital stocks then this term is zero. Ωjk ∂2pj

∂sk∂si
reflects702

the fact that investing in i may itself affect the curvature of the intertemporal welfare function703

in the direction of k and i (i.e. ∂2pj

∂sk∂si
= ∂

∂si
Vsjsk). If the effect of increasing asset i is to704

increase the concavity in the direction of increases in j and k ( ∂2pj

∂sk∂si
< 0) then the existence of705

positive correlation between the latter two assets results in a compensating reduction in the706

asset price. This creates addition “self insurance” opportunities from portfolio diversification.707

Some insight on the numerator terms involving covariances can be gleaned by realiz-708

ing that the covariance between innovations in sj (the residual of changes in sj after the709

deterministic drift µj(s,x(s)) is differenced away) and innovations in sk can be viewed as710

their rescaled relationship in expectation. Specifically, if the conditional expectation of sj711

and sk is linear26 E[dsj|dsk] = βdsk, then it is well known that β = Ωjk

σ2k . In other words,712

the covariance terms in (A.4) reflect the expected marginal effect of dsk on dsj such that713

the risk terms in the multivariate asset case account for systematic (linear) cross-effects be-714

26Linearity of the conditional mean follows directly from the joint normality assumption for Ito processes.
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tween perturbations in stocks in a way that is analogous to how the previous cross-terms715

in the numerator account for capital gains through deterministic relationships via price and716

cross-stock effects.717

Finally, it is noteworthy that the effects of stochasticity disappear from (A.4) when two718

conditions hold: 1) when all second moments are constant regardless of the stock levels, and719

2) the intertemporal welfare function, V , is quadratic such that investments have no effect720

on its curvature. However, since the intertemporal welfare function inherits the properties721

of the instantaneous benefits function, the economic program, and biophysical dynamics in722

a complex manner, the latter property is difficult to verify ex ante.723

The numerical approximation of the shadow price function is carried out using “value724

function approximation” and is detailed in ??. As detailed in Fenichel, Abbott, and Yun725

(2018) for the deterministic case and employed in Yun et al. (2017), this approach uses a726

Chebyshev polynomial basis to approximate the intertemporal welfare function using the727

HJB equation. We then differentiate the HJB equation to obtain estimates of the shadow728

prices.729

Appendix B. Numerical approximation730

Fenichel, Abbott, and Yun (2018) and Yun et al. (2017) describe how the HJB equation731

can be combined with functional approximation approaches frequently used in numerical732

dynamic programming to approximate the entire shadow price function over a closed do-733

main of capital stocks. For the deterministic, multi-asset case they advocate approximating734

V (s(t)) using the HJB equation (analogous to (A.3)), replacing V (s(t)) on the LHS of the735

equation with a weighted sum of the tensor product of Chebyshev basis functions in the736

stock vector s(t) and replacing the partial derivatives of the value function on the RHS with737

the partial derivatives of this approximation. The coefficients that determine the weightings738

on the basis functions can be solved analytically and are chosen (in a system with as many739

approximation points as coefficients) to make the LHS and RHS of the approximated HJB740
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equation hold with equality.27
741

This value (intertemporal welfare) function approximation technique can be adapted742

with relatively minor changes to the stochastic diffusion case. First, define the bounded743

approximation interval for each state variable. Then choose M evaluation points within this744

interval for each of the S capital stocks and then calculate W (s (t) , x (s (t))), µ (s,x (s))745

and Ω(s) at each point.28 The univariate node coordinates are then permuted to yield746

MS grid points. We define φi as the M × (qi + 1) basis matrix of qith degree for state747

variable i. This is a matrix of qi + 1 basis functions - Chebyshev polynomials of ascending748

degree in our case - evaluated at the M evaluation points. To approximate over the bounded749

domain in RS we find the tensor product across all dimensions (i.e. allow for full interactions750

across the univariate basis functions) to form an MS ×
∏S

i=1 (qi + 1) basis matrix: Φ (S) =751

φN ⊗ φN−1⊗ . . .⊗ φ1 where S is the MS × S matrix of evaluation points (i.e. all grid nodes752

of M evaluation points for all S state variables). We can now define our approximation to753

the intertemporal welfare function V (Sm) ≈ Φm (S)β where m indexes the MS distinct754

capital stock vectors (i.e. the individual evaluation points in the S-dimensional grid) and755

Sm is the mth row of S. Φm (S) is the mth row of Φ (S), and β is a
∏S

i=1 (qi + 1) × 1756

vector of unknown approximation coefficients. Using the fact that ∂V (Sm)
∂si

≈
(
∂Φm(S)
∂si

)
β757

and ∂2V (Sm)
∂si∂sj

≈
(
∂2Φm(S)
∂si∂sj

)
β we can replace the HJB equation in (A.3) with the following758

27In some cases it may be desirable to utilize more approximation nodes than the number of coefficients
- an over-determined system. In this case, the coefficients can be chosen to minimize the sum of squared
deviations between the LHS and RHS of the approximation. The analytical expression for this solution is
analogous to ordinary least squares (Fenichel, Abbott, and Yun, 2018).

28In many cases the evaluation nodes are found by finding the M roots of a unidimensional Chebyshev
polynomial on the bounded approximation range for each state variable. However, care must be taken so
that the nodes are laid out in a way that the system dynamics do not leave the approximating domain in
expectation.
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approximation:759

δΦm (S)β = W (Sm) +

[
S∑
j=1

diag(µj (Sm))

(
∂Φm(S)

∂sj

)
β

+
1

2

S∑
j=1

S∑
k=1

diag(Ωjk(Sm))

(
∂2Φm(S)

∂sj∂sk

)
β

] (B.1)

Collecting terms involving β yields:760

[
δΦm (S)−

S∑
j=1

diag(µj (Sm))

(
∂Φm(S)

∂sj

)
− 1

2

S∑
j=1

S∑
k=1

diag(Ωjk(Sm))

(
∂2Φm(S)

∂sj∂sk

)]
β

= Ψm(S)β = W (Sm)

Stacking these MS vector equations results in the equation Ψ(S)β = W (S). If MS =761 ∏S
i=1 (qi + 1) (i.e. the number of approximation points equals the number of unknown ap-762

proximation coefficients) then the approximation coefficients can be calculated in a straight763

foward way through matrix inversion. Alternatively, if MS >
∏S

i=1 (qi + 1) then the β can764

be found using least squares.765

β = (Ψ(S)′Ψ(S))
−1

Ψ(S)′W (S) (B.2)

After obtaining the approximation Φ(S) it is straightforward to find the shadow values766

of any given capital stock by taking its partial derivative.767

Fenichel, Abbott, and Yun (2018) discuss the importance of determining the domain768

of approximation. They show that in multi-dimensional systems the system dynamics to769

can lead outside the approximation domain, which hinders the ability to recover shadow770

prices. They argue that it is important to make sure the approximation domain is sufficient771

to include dynamic from any stock size for which a shadow price is desired. In the single772

stock deterministic case this is never an issue so long as the system has attractors that are773
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within the approximation domain. However, this property does not extend to stochastic774

dynamics. This is because a shock at the edge of the approximation domain could lead the775

system outside the approximation domain for a non-trivial period of time. Therefore, extra776

attention is likely needed to enlarge the approximation domain when system dynamics are777

stochastic.778

Appendix C. Numerical Performance Comparison: Chebyshev vs. Brute Force779

The Pindyck example presented in Section 3 is useful since it provides a known closed-780

form solution for the intertemporal welfare function. We use it to compare the accuracy781

of the numerical approximation of Chebyshev polynomial approximation and the “brute782

force” forward simulation approach. For this comparison, 35 Chebyshev polynomial nodes783

for 35th order (exactly identified) are applied for Chebyshev polynomial approximation. In784

the brute forth approximation, 0.01 time interval for the final time 200 are replicated for785

20000 stochastic simulations. The graphical comparison across the closed form solution,786

Chebyshev polynomial approximations, and brute force forward simulation are shown in787

Figure (C.10). Panel (a) of Figure (C.10) is the closed form solution of the value function for788

the deterministic and stochastic models. The other panels in Figure (C.10) are a graphical789

comparison of the closed form solution (black), Chebyshev polynomial approximation (red),790

and brute force forward simulation (blue) across different volatility levels.791
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(a) Closed form solution (b) σ = 0.1

(c) σ = 0.2 (d) σ = 0.3

Figure C.10: Comparisons of numerical approximations of Pindyck model: Closed form solution vs. Cheby-
shev polynomial approximation and brute force forward simulation.

48



Table C.2: Comparison of numerical performances: Chebyshev polynomial and brute force approximation
results are compared with the closed form solution.

Chebyshev Burte Force
RMSE Running Time RMSE Running Time

σ = 0.1 4.19e-07 0.11 sec. 0.0096 121.40 min.
σ = 0.2 1.95e-05 0.84 sec. 0.0650 126.54 min.
σ = 0.3 0.0041 0.10 sec. 0.1336 127.11 min.

Table C.2 presents the numerical performances of Chebyshev polynomial and brute force792

approximation. It is obvious that Chebyshev polynomial approximation dominates the error793

size and running time for all volatility cases. If Chebyshev polynomial approximation works,794

its approximation performances are expected to be better than that brute force approxima-795

tion provides. However, Chebyshev polynomial approximation often crashes its performance796

(e.g., our cubic growth example) or produces overfitting issues (e.g., overly wavy curves).797

Since the true value function is unknown in many general cases, Chebyshev polynomial ap-798

proximation is not always applicable or the best. This is generally true for the most of799

global approximation methods not limited to Chebyshev polynomial approximation. Nu-800

merical performances of the brute force approximation is really variable. Even though its801

expensive computational burden, the brute force approximation has its own value. First of802

all, brute force approximation is not likely to fail for producing its results. This means that803

brute force approximation is mostly applicable for where the global approximation methods804

fails. Also, the brute force approximation can provide the best guess about how the true805

value function is shaped. With the abundant computational resources, the approximation806

error size could be reduced extremely. With σ = 0.1 simulation, the RMSE is 0.1330, 0.0096,807

1.81e-05 and for 10000, 20000, and 30000 stochastic simulations. Using the parallel com-808

puting resources, the approximation error size and computation time could be reduced in a809

favorable level. As an independent approximator or first snapshot provider of value function,810

in general, the brute force approach compares favorably to the Chebyshev approach (or any811

other global approximation approaches). In the conference version of this paper we will have812

a complete numerical comparison of these methods.813
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